

INCONEL* alloy HX (UNS N06002/W.Nr. 2.4665) is a high-temperature, matrix-stiffened, nickel-chromiumiron-molybdenum alloy with outstanding oxidation resistance, and exceptional strength at up to 2200°F (1200°C).

It is used for components such as combustion chambers, afterburners and tail pipes in aircraft and land-based gas turbine engines; for fans, roller hearths and support members in industrial furnaces, and in nuclear engineering.

INCONEL alloy HX is readily fabricated and welded.

Table 1 - Limiting	Chemical	Composition, 9	% b	y Weight
--------------------	----------	----------------	-----	----------

Carbon	0.05-0.15
Chromium	20.5-23.0
Cobalt	0.5-2.5
Iron	17.0-20.0
Manganese	1.0 max.
Molybenum	8.0-10.0
Nickel	Balance*
Silicon	1.0 max.
Tungsten	0.2-1.0
Phosphorus	0.04 max.
Sulfur	0.03 max

*Reference to the balance of the alloy's composition does not guarantee this is exclusively of the element mentioned but that it predominates and others are present only in minimal quantities.

Physical Properties

Some physical properties for INCONEL alloy HX are given in Table 2. Thermal conductivity data (Table 3) and electrical resistivity (Table 5) were determined from 5 casts of cold-rolled sheet, 0.039-0.067 in (1-1.7 mm) thick, heated-treated at 2150°F (1175°C)/rapid air cooled.

Mean coefficient of linear thermal expansion data (Table 4) are for solution-treated material. A variation of $\pm 5\%$ can be expected for compositional changes within the release specification, processing history and form.

The dynamic moduli data (Table 6) were obtained from cold-rolled sheet, 0.039-0.067 in (1-1.7 mm) thick, heat-treated at 2150°F (1175°C)/rapid air cooled and vibrated in the flexural mode.

Table 2 - Physical Properties			
Density, g/cm³ lb/in³			
Melting Range, °C °F			
Specific Heat, J/kg °C Btu/lb °F			
Poisson's Ratio at room temperature	0.320		

Available Forms

INCONEL alloy HX is available as rod, bar, billet, extruded section, plate, sheet, strip, wire, pipe and tube.

Publication Number SMC-007 Copyright © Special Metals Corporation, 2005 (Oct 05)

INCONEL and NIMONIC are trademarks of the Special Metals Corporation group of companies.

The data contained in this publication is for informational purposes only and may be revised at any time without prior notice. The data is believed to be accurate and reliable, but Special Metals makes no representation or warranty of any kind (express or implied) and assumes no liability with respect to the accuracy or completeness of the information contained herein. Although the data is believed to be representative of the product, the actual characteristics or performance of the product may vary from what is shown in this publication. Nothing contained in this publication should be construed as guaranteeing the product for a particular use or application.

NCONEL® alloy

Temperature		Thermal Conductivity		
°C	°F	W/m °C	Btu/ft h °F	
20	68	11.6	81	
100	212	12.9	90	
200	392	14.6	102	
300	572	16.3	114	
400	752	17.9	126	
500	932	19.5	137	
600	1112	21.1	148	
700	1292	22.9	161	
800	1472	24.6	173	
900	1652	26.3	184	
1000	1832	27.9	196	

Table 3 - Thermal Conductivity

Table 4 - Mean Coefficient of Linear Thermal Expansion

°C	10 ⁻⁶ /°C	۴	10 ⁻⁶ /°F
20 - 100	13.3	70 -200	7.40
-200	14.0	-600	7.96
-300	14.3	-1000	8.27
-400	14.5	-1200	8.53
-500	14.7	-1350	8.69
-600	15.1	-1500	8.88
-700	15.7	-1600	9.01
-800	16.0		
-900	16.3		
-1000	16.7		

Table 5 - Electrical Resistivity

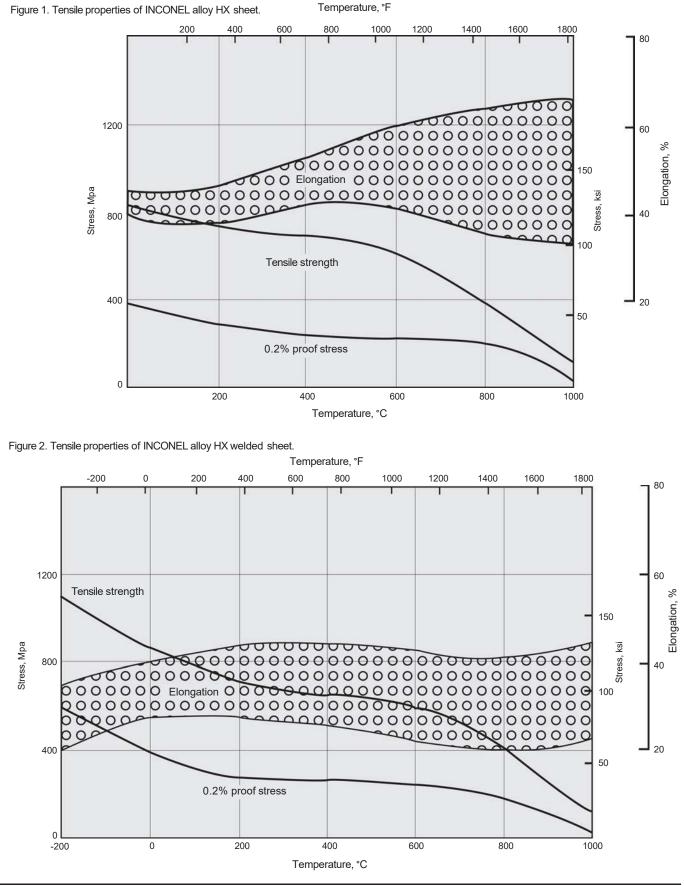
Temperature		Electrical Resistivity	
°C	°F	$\mu\Omega$ cm	Ω circ mil/ft
20	68	116	698
100	212	118	710
200	392	120	722
300	572	122	734
400	752	124	746
500	932	126	758
600	1112	127	764
700	1292	127	764
800	1472	127	764
900	1652	127	764
1000	1832	128	770

Table 6 - Dynamic Moduli

Tempe	rature	Dynamic Young's Modulus		Dynamic Torsional M odulus	
°C	۴F	G Pa	10³ ksi	GPa	10³ksi
20	68	205	29.7	80	11.6
100	212	202	29.3	78	11.3
200	392	195	28.3	75	10.9
300	572	190	27.6	72	10.4
400	752	183	26.5	70	10.2
500	932	177	25.7	66	9.6
600	1112	168	24.4	62	9.0
700	1292	161	23.3	60	8.7
800	1472	153	22.2	56	8.1
900	1652	145	21.0	53	7.7
1000	1832	135	19.6	49	7.1

Mechanical Properties

Room-temperature mechanical properties, typical of a single representative heat are quoted in Table 7. Data in Fig. 1 are for cold-rolled sheet, 0.039-0.067 in (1-1.7 mm) thick, heat-treated at 2150°F (1175°C)/rapid air cooled. Strain rates of 0.005/min to proof stress (at room temperature), 0.002/min to proof stress (at elevated temperatures), and 0.1 min thereafter.

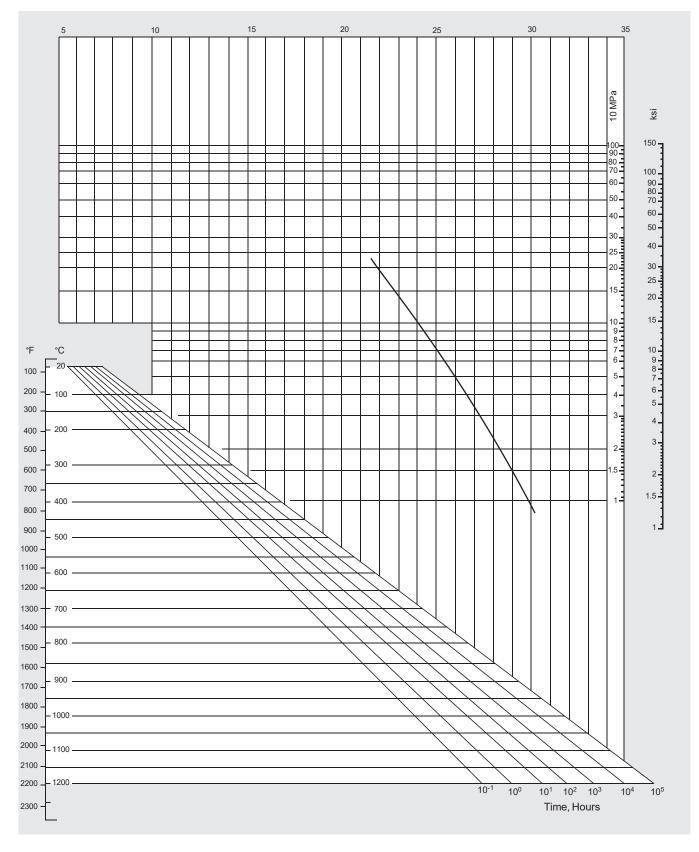

Data in Fig. 2 are for cold-rolled, welded sheet, 0.039-0.067 in (1-1.7 mm) thick, heat-treated at 2150°F $(1175^{\circ}C)$ /rapid air cooled. The sheet was welded by the gas-tungsten-arc (T.I.G.) process using INCONEL filler metal HX with argon as the shielding gas.

Creep-rupture properties of sheet (heat-treated at 2150°F (1175°C)/rapid air cooled) are shown in Fig. 3 by Larson-Miller presentation.

Table 7 - Mechanical Properties of Sheet at Room Temperature

Tensile S	Tensile Strength		0.2% Proof Stress		Hardness
ksi	MPa	k si	MPa	%	Rb
115	793	50	345	45.5	90

INCONEL® alloy HX



3

INCONEL® alloy HX

Figure 3. Creep-rupture properties of INCONEL alloy HX sheet.

Larson-Miller Parameter, T(20 +log t) x 10-3, T in °K, t in hours

Corrosion Resistance

INCONEL alloy HX has outstanding oxidation resistance at temperatures up to 2200°F (1200°C). Test results at 1920 and 2010°F (1050 and 1100°C) for 100 hours' continuous exposure are shown in Fig. 4.

In a carburizing atmosphere of 2% methane plus 98% hydrogen flowing at 3 furnace volumes per hour for 100 hours at 1800°F (980°C), samples of a representative heat of INCONEL allow HX showed an average weight gain of 7.7 mg/cm².

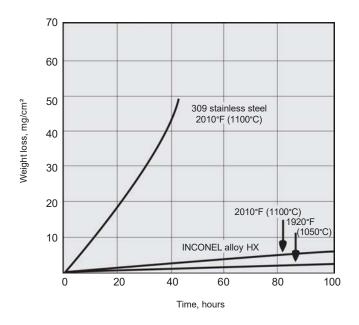


Figure 4. Comparative oxidation resistance of INCONEL alloy HX and AISI 309 stainless steel

Fabrication

Heat Treatment

The recommended heat treatment is 2150°F (1175°C), followed by rapid air cooling or water quenching. INCONEL alloy HX is normally supplied in this solutionheat-treated condition. For some applications it can be given other treatments. Consult Special Metals for further details.

Hot and Cold Forming

INCONEL alloy HX can be readily cold formed using slightly higher power than that used for austenitic stainless steels. It is best cold formed in the solution-heat-treated condition.

For hot forming, the alloy should be heated to a starting temperature of 2150°F (1175°C). It should not be hot worked below 1800°F (980°C).

Welding

The alloy can be welded by metal arc, gas-tungsten-arc (T.I.G.), gas-metal-arc (M.I.G.) and submerged arc processes. Welded surfaces must be thoroughly descaled and cleaned. Welding is best carried out flat since the fluidity of the alloy makes position welding difficult.

INCONEL welding electrode 117 and INCONEL filler metal 617 produce weldments that match or exceed base metal high-temperature strength and oxidation resistance. Matched composition welding consumables (INCONEL filler metal HX and INCONEL welding electrode HX) are available.

Pre-heating and post-weld heat treatments are not normally necessary. For the greatest corrosion resistance, however, solution-heat-treatment after welding may be necessary.

Machining

INCONEL alloy HX should be machined in the annealed condition using carbide or high-speed steel tools and a copious supply of sulfur-free cutting fluid. Tools and machines should be as rigid as possible to minimize deflection and vibration. Speeds and feeds will be similar to those for NIMONIC alloy 75.

Specifications

INCONEL alloy HX is designated as UNS N06002/ W.Nr 2.4665. Alloy HX is listed in NACE MR-01-75. The alloy is available as rod, bar, billet, extruded section, plate, sheet, strip, wire, pipe and tube. Specifications for INCONEL alloy HX include the following:

ASTM B 435 Plate, sheet and strip B 366 Fittings B 572 Rod		Deutschen Luf LW2.4665 Part 1 LW2.4665 Part 2	tfahrt Sheet and strip Bar and forgings		
B 619 B 622 B 626	B 619Welded pipeB 622Seamless pipe and tube	M inistère d'Eta AIR 9165-43	Ministère d'Etat de la Défense AIR 9165-43 Bar, forgings and sheet		
B 751 B 775 B 829	Tube Pipe Pipe and Tube	AECMA PrEN2182 PrEN2182	Bar Forgings		
A SME SB 435 SB 366	Plate, sheet and strip Fittings	PrEn 2183 PrEN2184 PrEN2185	Forgings Section for welded rings Sheet, strip and plate		
SB 572 SB 619 SB 622 SB 626 SB 751 SB 775 SB 829	Rod Welded pipe Seamless pipe and tube Welded tube Tube Pipe Pipe Pipe and Tube	DIN 17744 17750 17751 17752 17753 17754	NiCr22Fe18Mo Composition Plate, Sheet and Strip Pipe and Tube Rod and Bar Wire Forgings		
SAE AMS 5536 AMS 5587 AMS 5588 AMS 5754 AMS 5798	Sheet, strip and plate Seamless tube Welded tube Bar, forgings and rings Wire	ISO 6207 6208 9723 9724 9725	Tube Plate, Sheet and Strip Bar Wire Forgings		
B SI HR6 HR204	Billet, bar and forgings Plate, sheet and strip				